Задачник по физике и электротехнике. Кинематика

Методика решения задач по кинематике Каждая физическая задача имеет свои особенности. Поэтому при решении любых физических задач, в том числе и кинематических, полезно придерживаться следующего порядка выполнения основных действий. Внимательно прочитав задачу, необходимо выяснить заданные условия и какие параметры необходимо определить. Кратко записать основные значения заданных величин, все внесистемные единицы перевести в систему СИ. Выяснить по условию задачи характер движения. Сделать схематический чертеж, отображающий описанное в задаче движение. Изобразить на нем траекторию движения, векторы скорости, ускорения, перемещения. Выбрать систему координат, связанную с телом отсчета, показать положительное направление координатных осей. Координатные оси выбирают так, чтобы проекции векторов на них выражались, возможно, более простым образом

Кинематика материальной точки. Задачи по курсу общей физики В основе предлагаемой работы лежит опыт семинарских занятий по курсам общей физики и астрономии для студентов астрономического отделения физического факультета МГУ. При изучении механики материальной точки, в особенности её разделов, связанных с движением по криволинейной траектории, часто оказываются полезными астрономиче­ские приложения. В условиях поверхности Земли набор естественных траекторий прак­тически сводится к параболе. В космосе, наоборот, представлены многие типы криволи­нейного движения: вращение по окружности, а также эллиптические, параболические и гиперболические траектории разной степени вытянутости. К тому же формы орбит кос­мических объектов не ограничиваются одними коническими сечениями. Например, об­ращение звёзд вокруг центра галактики во многих случаях не описываются законами Кеплера, а в процессе сжатия вращающихся газовых туманностей имеет место посте­пенное приближение к центру по спирали. Параллельно с физическим содержанием за­дачи уместно привести и первые сведения о математическом аппарате плоских кривых линий.

Задача Точка движется по закону с параметрами a, b и k. Случай k=0 здесь не представляет интереса. Равенство нулю a или b означает прямолинейное перемещение вдоль одной из координатных осей. Если они оба отличны от нуля, то траектория является отрезком гиперболы y=ab/x.

Заряженная частица совершает пространственное движение в однородном и постоянном магнитном поле

Задача. Исходя из первого и второго законов Кеплера, определить ускорение планеты. Планеты движутся по эллипсам, в одном из фокусов которого находится Солнце. Угол j отсчитываем от направления перигелия. Уравнение эллипса с эксцентриситетом e и параметром p в полярных координатах имеет вид:

Частица движется к притягивающему центру по плоской траектории где r и φ — известные функции времени. В начальный момент времени угол φ равен нулю, а скорость тела направлена перпендикулярно радиус‑вектору и по абсолютной величине равна v0. Полагаем, что сохраняется постоянной секторная скорость, то есть справедлива формула ( 11 ). Определить зависимость скорости от расстояния r до притягивающего центра, а также трансверсальную и радиальную компоненты ускорения.

Проекция ускорения на естественные оси. Естественными осями при изучении криволинейного движения на плоскости принято считать касательную и нормаль к траектории. Тангенциальная и нормальная компоненты векторов часто позволяют полнее раскрыть физический смысл рассматриваемого движения. Вводимые ниже понятия напоминают те, которыми мы пользовались в полярной системе координат, но они не зависят от выбора системы отсчёта.

Точка описывает эллипс . Определить нормальную и тангенциальную компоненты ускорения, а также радиус кривизны траектории в точках A и B

Кинематика специальной теории относительности Постулаты Эйнштейна. Никакие эксперименты, проводимые в данной лабораторной инерциальной системе не позволяют различить находится эта система в состоянии покоя или равномерного и прямолинейного движения. Физические процессы во всех инерциальных системах протекают одинаково и не зависят от выбора системы отсчета, т.е. инвариантны по отношению к преобразованиям из одной инерциальной системы в другую.

Дифракция Принцип Гюйгенса-Френеля

Количественное выражение принципа Гюйгенса – Френеля: Каждый элемент волновой поверхности S служит источником вторичной сферической волны, амплитуда которой пропорциональна площади элемента dS и убывает с расстоянием по закону , - фаза колебаний на волновой поверхности, к – волновое число, а – определяется амплитудой светового колебания в месте нахождения элемента dS.

Дифракция на оси от круглого отверстия В отверстии помещается только первая зона Френеля, радиус отверстия . , где - амплитуда колебаний в точке Р в отсутствии препятствия,  - интенсивность в отсутствии отверстия. В центре (точка Р) – яркое пятно, интенсивность плавно спадает к периферии

Дифракция на непрозрачном диске

Пример. Автомобиль проходит первую треть пути со скоростью , а оставшуюся часть пути – со скоростью = 50 км/ч. Определить скорость на первом участке пути, если средняя скорость на всем пути  = 37,5 км/ч. Анализ и решение: Обозначим весь путь через S, время, затраченное на прохождение первого участка пути – через t1 время движения на втором участке пути – через t2.

Тело, падающее без начальной скорости с некоторой высоты h1, прошло последние h2 = 30 м за время t2 = 0,5 с. Найти высоту падения hl и время падения t1. Сопротивлением воздуха пренебречь.

По графику зависимости координаты х от времени t, изображенной на рисунке построить графики зависимости  и

С балкона вертикально вверх брошен мячик с начальной скоростью υ0 = 8 м/с. Через 2 с мячик упал на зем­лю. Определить высоту балкона над землей. Принять g = 10 м/с2. Результат представить в единицах СИ.

Ракета движется относительно неподвижного наблюдателя со скоростью υ = 0,99с (с – скорость света в вакууме). Какое время пройдет по часам неподвижного наблюдателя, если по часам, движущимся вместе с ракетой, прошел один год? Как изменятся линейные размеры тел в ракете (по линии движения) для неподвижного наблюдателя? Как изменится для этого наблюдателя плотность вещества в ракете?

Задачи для самостоятельного решения Из двух пунктов, расположенных на расстоянии х0 = 90 м друг от друга одновременно начали движение два тела в одном направлении. Тело, движущееся из первого пункта имеет скорость υ1 = 10 м/с, а тело движущееся из второго пункта имеет скорость υ2 = 4 м/с. Через сколько времени первое тело догонит второе. Результат представить в единицах СИ. 

С какой наименьшей скоростью следует бросить тело под углом 56° к горизонту, чтобы оно перелетело через вертикальную стену высотой 5,6 м, если стена находится от точки бросания на расстоянии 5 м? Принять g = 10 м/с2. Результат представить в единицах СИ и округлить до десятых. 

Пропеллер самолета диаметром 3 м вращается при посадке с частотой 2000 мин–1. Посадочная скорость самолета относительно Земли равна 162 км/ч. Определить скорость точки на конце пропеллера при посадке. Результат представить в единицах СИ и округлить до целого числа.

Если тепловая и электромагнитная энергия по сути аналогичны друг другу в тепловых и электрических процессах, то потенциал аналогичен температуре, также как аналогичны феноменологические термины теплоты и электричества. И как теплота переходит из области высоких температур в область низких температур, так и электричество переходит из области с высоким потенциалом в область с низким потенциалом. Так возникло понятие электрического тока I, как перетока определённого количества электричества Q=It от высокого потенциала к низкому. Единицей измерения электрического тока в системе СИ установлен Ампер (А).

Таким образом, если мы знаем механические и электромагнитные свойства используемого электромагнитным полем физического пространства, а также его геометрию, мы можем всегда рассчитать мощности, возникающие при протекании токов в этом пространстве.

На главную