Методика решения задач по физике Кинематика Оптика Колебания и волны Термодинамика Электродинамика Электричество

Задачник по физике и электротехнике.

Развитие взглядов на природу света и первые открытия в области физической оптики

Первые представления о том, что такое свет, относятся также к древности.

В древности представления о природе света были весьма примитивными, фантастическими и к тому же весьма разнообразными. Однако, несмотря на разнообразие взглядов древних на природу света, уже в то время наметились три основных подхода к решению вопроса о природе света. Эти три подхода в последующем оформились в две конкурирующие теории – корпускулярную и волновую теории света.

Подавляющее большинство древних философов и ученых рассматривало свет как некие лучи, соединяющие светящееся тело и человеческий глаз. При этом одни из них полагали, что лучи исходят из глаз человека, они как бы ощупывают рассматриваемый предмет. Эта точка зрения имела сначала большое число последователей. Даже такой крупнейший ученый, как Квклид, придерживался ее. Формулируя первый закон геометрической оптики, закон прямолинейного распространения света, Евклид писал: “Испускаемые глазами лучи распространяются по прямому пути”. Такого же взгляда придерживался Птолемей и многие другие ученые и философы.

Однако позже, уже в средние века, такое представление о природе света теряет свое значение. Все менше становится ученых, следующих этим взглядам. И к началу XVII в. эту точку зрения можно считать уже забытой.

Другие, наоборот, считали, что лучи испускаются светящимся телом и, достигая человеческого глаза, несут на себе отпечаток светящегося предмета. Такой точки зрения держались атомисты Демокрит, Эпикур, Лукреций.

Последняя точка зрения на природу света уже позже, в XVII в., оформилась в корпускулярную теорию света, согласно которой свет есть поток каких-то частиц, испускаемых светящимся телом.

Третья точка зрения на природу света была высказана Аристотелем. Он рассматривал свет не как истечение чего-то от светящегося предмета в глаз и тем более не как некие лучи, исходящие из глаза и ощупывающие предмет, а как распространяющееся в пространстве (в среде) действие или движение.

Мнение Аристотеля в его время мало кто разделял. Но в дальнейшем, опять же в XVII в., его точка зрения получила развитие и положила начало волновой теории света.

В XVII в. в связи с развитием оптики вопрос о природе света вызывает все больший и больший интерес. При этом происходит образование двух противоположных теорий света: корпускулярной и волновой.

Для развития корпускулярной теории света была более благоприятная почва. Действительно, для геометрической оптики представление о том, что свет есть поток особых частиц, было вполне естественным. Прямолинейное распространение света хорошо объяснялось с точки зрения этой теории. Также хорошо объяснялся и закон отражения света. Да и закон преломления не противоречил этой теории.

Общее представление о строении вещества также не вступало в противоречие с корпускулярной теорией света. В основе тогдашних представлений о строении вещества лежала атомистика. Все тела состоят из атомов. Между атомами существует пустое пространство. В частности, тогда считали, что межпланетное пространство является пустым. В нем и распространяется свет от небесных тел в виде потоков световых частиц. Поэтому вполне естественно, что в XVII в. было много физиков, которые придерживались кор-пускупирной теории света.

В XVII в., как мы сказали выше, начинает развиваться и представление о волновой природе света.

Родоначальником волновой теории света нужно считать Декарта. Декарт был противником существования пустого пространства. В связи с этим он не мог считать свет потоком световых частиц. Свет, по Декарту, это нечто вроде давления, передающегося через тонкую среду от светящегося тела во все стороны. Если тело нагрето и светится, то это значит, что его частицы находятся в движении и оказывают давление на частицы той среды, которая заполняет все пространство. Эта среда получила название эфира. Давление распространяется во все стороны и, доходя до глаза, вызывает в нем ощущение света.

Такова точка зрения Декарта на природу света. Нужно только отметить, что в своем сочинении, посвященном специально оптике, Декарт пользуется и корпускулярной гипотезой. Но это, как он сам говорит, сделано для того, чтобы его рассуждения были более понятны. Поэтому неправы те, кто на основе только этого сочинения зачисляет Декарта в сторонники корпускулярной теории света. Ученые XVII и XVIII вв. это хорошо понимали и считали Декарта родоначальником волновой теории света.

Конечно, у Декарта нет еще представления о световых волнах. Он представляет себе свет как распространяющееся движение, или импульс в эфире. Но не это важно. Важным является то, что Декарт рассматривает свет уже не как поток частиц, а как распространение давления, или движение импульса и т. п.

Декарт пришел к отказу от корпускулярной теории света чисто умозрительным путем. Никаких опытных данных, которые говорили бы за волновую теорию света, тогда еще не было. Первое открытие, свидетельствующее о волновой природе света, было сделано итальянским ученым Франческо Гримальди (1618 – 1663). Оно было опубликовано в 1665 г. после смерти ученого.

Гримальди заметил, что если на пути узкого пучка световых лучей поставить предмет, то на экране, поставленном сзади, не получается резкой тени. Края тени размыты, кроме того, вдоль тени появляются цветные полосы. Открытое явление Гримальди назвал дифракцией, но объяснить его правильно не сумел. Он понимал, что наблюдаемое им явление находится в противоречии с законом прямолинейного распространения света, а вместе с тем и с корпускулярной теорией. Однако он не решился полностью отказаться от этой теории.

Свет, по Гримальди, распространяющийся световой флюид (тонкая неощутимая жидкость). Когда свет встречается с препятствием, то оно вызывает волны этого флюида. Гримальди привел аналогию с волнами, распространяющимися по поверхности воды. Подобно тому как вокруг камня, брошенного в воду, образуется волна, так и препятствие, помещенное на пути света, вызывает в световом флюиде волны, которые распространяются за границы геометрической тени.

Вторым важным открытием, относящимся к физической оптике, было открытие интерференции света. Простой опыт по интерференции света наблюдал Гримальди. Опыт заключается в следующем: на пути солнечных лучей ставят экран с двумя близкими отверстиями (проделанными в ставне, закрывающей окно); получаются два конуса световых лучей. Помещая экран в том месте, где эти конусы накладываются друг на друга, замечают, что в некоторых местах освещенность экрана меньше, чем если бы его освещал только один световой конус. Из этого опыта Гримальди сделал вывод, что прибавление света к свету не всегда увеличивает освещенность.

Другой случай интерференции примерно в те же годы исследовал английский физик Роберт Гук (1635 – 1703). Он изучал цвета мыльных пленок и тонких пластинок из слюды. При этом он обнаружил, чго эти цвета зависят от толщины мыльыой пленки или слюдяной пластинки.

Гук подошел к изучению этих явлений с правильной точки зрения. Он полагал, что свет – это колебательные движения, распространяющиеся в эфире. Он даже считал, что эти колебания являются поперечными.

Явление интерференции света в тонких пленках Гук объяснял тем, что от верхней и нижней поверхности тонкой, например мыльной, пленки происходит отражение световых волн, которые, попадая в глаз, производят ощущение различных цветов. Однако у Гука не было правильного представления о том, что такое цвет.

Он не связывал цвет с частотой колебаний или с длиной волны, поэтому не смог разработать теорию интерференции.


На главную