Ядерные реакторы

Тепловые контуры атомных станций Атомные электрические станции отличаются не только по типу реакторов, и материалов теплоносителя, но и по устройству тепловых контуров.

Реактор ВВЭР Для двухконтурной АЭС основным серийным блоком в настоящее время является в России ВВЭР-1000 и его современные модификации с мощностью 1млн.кВт.

Кипящие реакторы Широкое распространение получила технология получения электрической энергии с помощью кипящих реакторов типа BWR. Кипящие реакторы отличаются от реакторов с водой под давлением тем, что генерируют пар непосредственно в активной зоне и не имеют для этого отдельных парогенераторов

Реактор РБМК Для одноконтурных АЭС в России основным серийным реактором является канальный реактор типа РБМК. Он также относится к классу кипящих реакторов.

Реакторная установка МКЭР -1500(Проект) Особенности МКЭР-1500 — защитная гермооболочка, КПД — 35,2 %, срок службы 50 лет, обогащение 2,4 %, расход природного урана — 16,7 г/МВт·ч(э) (самый низкий в мире), позволяет производить изотоп кобальт-60, используемый в медицине на 5 млн Евро в год.

Реакторы на естественном уране с тяжеловодным замедлителем и теплоносителем Для одно- и двухконтурных водо-водяных реакторов требуется обогащение топлива по делящемуся изотопу 235U, для того, чтобы компенсировать относительно высокое поглощение нейтронов легководным теплоносителем. Этот недостаток можно преодолеть, используя в качестве замедлителя тяжелую воду, а в качестве теплоносителя – либо тяжелую воду, либо кипящую легкую воду. Если в качестве теплоносителя использовать тяжелую воду, то можно создать реактор на естественном уране. Этот принцип реализован в канадских реакторах CANDU.

Газоохлаждаемые реакторы Реактор с графитовым замедлителем имеет более длинную историю, чем любой другой тип реакторов, поскольку первая критическая сборка, построенная под руководством Энрико Ферми в Чикаго в декабре 1942 г., представляла собой реактор с графитовым замедлителем на естественном уране.

Реакторы HTGR являются еще одним усовершенствованным типом газоохлаждаемого реактора. В HTGR в качестве замедлителя используется графит, а теплоносителем является гелий. Гелий – инертный газ, который не вступает в химическое взаимодействие с графитом даже при высоких температурах. Поэтому на выходе из реактора теплоноситель может иметь более высокую температуру, чем в AGR. Разработаны два прототипа реактора – с призматическими ТВС и шаровыми твэлами.

Атомные электростанции с натриевым теплоносителем Жидкометаллический теплоноситель может использоваться в реакторах, как на тепловых, так и на быстрых нейтронах, в последнем случае коэффициент воспроизводства ядерного горючего больше единицы. Преимущество такого теплоносителя – возможность работы при низких давлениях (0,5 МПа) в первом контуре. Значительная в сравнении с водным и газовым теплоносителями плотность жидких металлов позволяет перекачивать малые объемы, т.е. уменьшать диаметр трубопроводов и расходы на собственные нужды, а также обеспечивать высокий коэффициент теплоотдачи от поверхности оболочки твэла к теплоносителю, что позволяет при той же температуре оболочки получать более высокие температуры теплоносителя. Пока для АЭС используется в качестве теплоносителя жидкий натрий, но рассматриваются и исследуются варианты использования эвтектических сплавов Na-K, Pb-Bi, а также Hg.

АЭС с реактором БН-350 в г. Актау (Шевченко) работала с 1973 по 2000гг. Остановлена по политическим причинам. Реакторная установка имеет 6 петель охлаждения, в состав каждой из которых входят расположенные вне реактора отсекающие входная и выходная задвижки, циркуляционные натриевые насосы первого и промежуточного контуров, промежуточный теплообменник и парогенераторная установка в составе двух испарителей и одного пароперегревателя.

БРЕСТ: быстрый реактор брест со свинцовым теплоносителем и пристанционным топливным циклом

Строение атомного ядра. Атом является сложной системой, в состав которой входят определенные частицы. Английский физик Э. Резерфорд предложил ядерную (планетарную) модель строения атома

ЭНЕРГИЯ СВЯЗИ АТОМНЫХ ЯДЕР И ДЕФЕКТ МАСС Ядра атомов представляют собой сильно связанные системы из большого числа нуклонов.

Ядерная реакция — процесс превращения атомных ядер, происходящий при их взаимодействии с элементарными частицами, гамма квантами и друг с другом, часто приводящий к выделению колоссальной энергии. Спонтанные (происходящие без воздействия налетающих частиц) процессы в ядрах — например , радиоактивный распад — обычно не относят к ядерным реакциям

Закон радиоактивного распада. В любом образце радиоактивного вещества содержится огромное число радиоактивных атомов. Так как радиоактивный распад имеет случайный характер и не зависит от внешних условий, то закон убывания количества N (t) нераспавшихся к данному моменту времени t ядер может служить важной статистической характеристикой процесса радиоактивного распада

Цепная ядерная реакция. Деление ядер урана было открыто в 1938 г. немецкими учеными О. Ганом и Ф. Штрассманом. Им удалось установить, что при бомбардировке ядер урана нейтронами образуются элементы средней части периодической системы: барий, криптон и др. Правильное толкование этому факту дали австрийский физик Л. Мейтнер и английский физик О. Фриш. Они объяснили появление этих элементов распадом ядер урана, захватившего нейтрон, на две примерно равные части. Это явление получило название деления ядер, а образующиеся ядра — осколков деления.

Ядерный реактор. Термоядерный синтез

Реакторы на быстрых нейтронах: Построены реакторы, работающие без замедлителя на быстрых нейтронах. Вероятность деления, вызванного быстрыми нейтронами мала такие реакторы не могут работать на естественном уране. Реакцию можно поддерживать лишь в обогащенной смеси, содержащей не менее 15% изотопа .

Элементарная частица – мельчайшие частицы материи, подчиненные условию, что они не являются атомными ядрами и атомами (исключение составляет протон); по этой причине их называют субъядерными.

Позитрон. Аннигиляция.Взаимные превращения элементарных частиц Открытие позитрона, частицы по своим характеристикам похожей на электрон, но имеющей в отличие от электрона положительный единичный заряд, было исключительно важным событием в физике. Еще в 1928 году П. Дирак предложил уравнение для описания релятивистской квантовой механики электрона.

На главную