Чем отличается курсовая работа от курсового проекта?

Китайская народная медицина

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

Уборка   квартир в Москве

Уборка квартир в Москве

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Заказ контрольной работы

Заказ контрольной работы

Интернет-магазин Olympus

Интернет-магазин Olympus

 

Туризм, путешествия: Бронирование отелей

Туризм, путешествия: Бронирование отелей

KupiVip – крупнейший онлайн-магазин

Гироскутер SmartWay

ТехносилаТехносила

Подарки

Онлайн-гипермаркет лучших товаров для детей

Метод интегрирования по частям Задача о площади криволинейной трапеции Вычисление площади в декартовых координатах. Линейные уравнения первого порядка Дифференциальное уравнение второго порядка Функция двух переменных

Полное приращение и полный дифференциал. Скалярное поле Знакопеременные ряды Исследовать на сходимость ряд.  Функциональные ряды Комплексные числа


Примеры решения задач контрольной, курсовой работы по высшей математике

 Функциональные ряды

Определение. Ряд, члены которого являются функциями, называется функциональным рядом. Его обозначают:

(1)

Определение. Если при ряд (1) сходится, то называется точкой сходимости ряда (1).

Определение. Множество всех значений , при которых функциональный ряд сходится, называется областью сходимости этого ряда.

Очевидно, что в области сходимости функционального ряда его сумма является функцией от . Будем ее обозначать . Справочный материал и примеры к выполнению контрольной работы по математике Производная функции Займемся непосредственно вычислением производных, для чего используем сводную таблицу формул дифференцирования. Вторая часть таблицы, в которой приведены производные основных элементарных функций, записана для сложных функций вида f(u), u=u(x).

Степенные ряды

Определение. Степенным рядом называется функциональный ряд вида:

(2)

где – некоторые числа, называемые коэффициентами степенного ряда.

Теорема (о структуре области сходимости степенного ряда)

Всякий степенной ряд сходится при . Если других точек сходимости у ряда нет, то считают, что . Если степенной ряд сходится во всех точках числовой прямой, то считают, что .

Свойства степенных рядов

Разложение функций в степенные ряды

Совпадает ли сумма полученного ряда Тейлора с функцией , для которой он составлен? Оказывается, не всегда. При каких условиях сумма ряда Тейлора совпадает с функцией, для которой он составлен?

Разложение функции в ряд Маклорена.


На главную