Задачи
Математика
Электроника
Физика
Культура
Геометрия
Энергетика
Практика

Искусство

Черчение
Реактор
Курсовая

Лабы

Контрольная
Электротехника
Типовые

Математика функции комплексной переменной

 

Понятие функции комплексной переменной

Пример. Показать по определению

Для функции предыдущего примера построить ее частотные спектры

ФКП называется непрерывной на множестве, если она непрерывна в каждой точке этого множества. В силу теоремы, сформулированной в п. 1.2, ФКП   непрерывна в точке (на множестве) тогда и только тогда, когда каждая из функций  и  непрерывна в точке (на множестве) как действительная функция двух действительных переменных. Поэтому же для ФКП справедливы теоремы о непрерывности суммы, произведения и отношения непрерывных функций, а также теорема о непрерывности сложной функции непрерывных функций.

Пример. Построить область, ограниченную линиями: ; ;

Дифференцирование ФКП Определение производной ФКП

Условия дифференцируемости ФКП С понятием производной ФКП в точке связано понятие дифференцируемости ФКП в точке (на множестве).

Пример. Показать, что ФКП  всюду дифференцируема; вычислить производную ФКП.

Аналитичность ФКП Из множества дифференцируемых ФКП выделяются аналитические ФКП (сокр. АФКП); свойства аналитических ФКП изучает теория аналитических функций комплексной переменной. Однозначная ФКП  называется аналитической (иначе регулярной) в области , если она дифференцируема в каждой точке этой области.

Восстановление аналитической ФКП по известной ее действительной компаненте

Интеграл ФКП определение и свойства интеграла ФКП

Интегрирование аналитической ФКП. Теорема Коши Одним из важнейших свойств аналитической в области ФКП является независимость интеграла этой функции от дуги (от пути интегрирования).

Пример. Вычислить интеграл ,  – целое.

Интегральная формула Коши Пусть ФКП  – аналитическая в односвязной области , произвольный контур   "погружен" в ,  – произвольная точка внутри . Тогда в этой точке  значение ФКП  определяется через значения  на контуре  по интегральной формуле

Классификация особых точек ФКП Разложение ФКП в ряд Тейлора

Пример. Разложить в ряд ФКП  по степеням .

Разложение ФКП в ряд Лорана Пусть однозначная ФКП  является аналитической функцией внутри кольца  между окружностями  и   с центром ; пусть  – произвольная точка этого кольца.

Пример. Убедиться, что для ФКП  ряд Лорана по степеням   состоит из конечного числа слагаемых.

Пример. Указать все области, в которых возможно разложение функции  в ряды Лорана по степеням . Найти эти разложения.

Классификация изолированных особых точек ФКП Пример.

Показать, что функция  имеет УОТ .

Пример Показать, что для ФКП  точка  – полюс второго порядка, точка  – полюс первого порядка.

Интегрирование ФКП с помощью вычетов Вычет ФКП в особой точке, его вычичление Понятие вычета является одним из основных понятий в теории ФКП и ее приложениях.

Пример. Вычислить вычеты ФКП

Основная теорема о вычетах Пусть ФКП  аналитическая на границе  области  и внутри этой области за исключением конечного множества изолированных особых точек . Построим около каждой особой точки  контур  так, чтобы внутри  была только одна особая точка ; контуры не пересекались; все контуры   были расположены внутри , ориентация всех контуров совпадает

Пример Для  убедиться в выполнении равенства

Вычислить .

Интегрирование функции действительной переменной методами теории ФКП

Пример. Вычислить интеграл , где  – отрезок, соединяющий точки   и .

Решение. , где .

.

ПРИМЕР 2. Вычислить .

Решение.

.

ПРИМЕР 3. Вычислить , где  – контур, "склеенный" из полуокружностей  и  () и отрезков  и  оси  (см. рисунок).

Решение. Воспользуемся свойством аддитивности интеграла по дуге и представим интеграл по контуру в виде суммы интегралов

  ().

На оси  имеем  (), т.е. ФКП  имеет значение , .

Поэтому , .

Для вычисления интегралов  и  используем соответствующие уравнения дуг окружностей:

;

.

Сложив полученные значения, вычисляем .

Задание

1. Вычислить , где дуга  есть часть параболы   при . Ответ: .

2. Вычислить , .

Ответ: . Следует взять ; на окружности  имеем  и , , .

3. Вычислить . Ответ: .


Физика

Математика
Электротехника
Начертательная геометрия
Информатика