Чем отличается курсовая работа от курсового проекта?

Китайская народная медицина

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

Уборка   квартир в Москве

Уборка квартир в Москве

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Заказ контрольной работы

Заказ контрольной работы

Интернет-магазин Olympus

Интернет-магазин Olympus

 

Туризм, путешествия: Бронирование отелей

Туризм, путешествия: Бронирование отелей

KupiVip – крупнейший онлайн-магазин

Гироскутер SmartWay

ТехносилаТехносила

Подарки

Онлайн-гипермаркет лучших товаров для детей

Типовые задачи по теме Ряды Вычислить интеграл Вычисление несобственного интеграла Ряды Фурье для четных и нечетных функций

Математика функции комплексной переменной

 

Понятие функции комплексной переменной

Пример. Показать по определению

Для функции предыдущего примера построить ее частотные спектры

ФКП называется непрерывной на множестве, если она непрерывна в каждой точке этого множества. В силу теоремы, сформулированной в п. 1.2, ФКП   непрерывна в точке (на множестве) тогда и только тогда, когда каждая из функций  и  непрерывна в точке (на множестве) как действительная функция двух действительных переменных. Поэтому же для ФКП справедливы теоремы о непрерывности суммы, произведения и отношения непрерывных функций, а также теорема о непрерывности сложной функции непрерывных функций.

Пример. Построить область, ограниченную линиями: ; ;

Дифференцирование ФКП Определение производной ФКП

Условия дифференцируемости ФКП С понятием производной ФКП в точке связано понятие дифференцируемости ФКП в точке (на множестве).

Пример. Показать, что ФКП  всюду дифференцируема; вычислить производную ФКП.

Аналитичность ФКП Из множества дифференцируемых ФКП выделяются аналитические ФКП (сокр. АФКП); свойства аналитических ФКП изучает теория аналитических функций комплексной переменной. Однозначная ФКП  называется аналитической (иначе регулярной) в области , если она дифференцируема в каждой точке этой области.

Восстановление аналитической ФКП по известной ее действительной компаненте

Интеграл ФКП определение и свойства интеграла ФКП

Интегрирование аналитической ФКП. Теорема Коши Одним из важнейших свойств аналитической в области ФКП является независимость интеграла этой функции от дуги (от пути интегрирования).

Пример. Вычислить интеграл ,  – целое.

Интегральная формула Коши Пусть ФКП  – аналитическая в односвязной области , произвольный контур   "погружен" в ,  – произвольная точка внутри . Тогда в этой точке  значение ФКП  определяется через значения  на контуре  по интегральной формуле

Классификация особых точек ФКП Разложение ФКП в ряд Тейлора

Пример. Разложить в ряд ФКП  по степеням .

Разложение ФКП в ряд Лорана Пусть однозначная ФКП  является аналитической функцией внутри кольца  между окружностями  и   с центром ; пусть  – произвольная точка этого кольца.

Пример. Убедиться, что для ФКП  ряд Лорана по степеням   состоит из конечного числа слагаемых.

Пример. Указать все области, в которых возможно разложение функции  в ряды Лорана по степеням . Найти эти разложения.

Классификация изолированных особых точек ФКП Пример.

Показать, что функция  имеет УОТ .

Пример Показать, что для ФКП  точка  – полюс второго порядка, точка  – полюс первого порядка.

Интегрирование ФКП с помощью вычетов Вычет ФКП в особой точке, его вычичление Понятие вычета является одним из основных понятий в теории ФКП и ее приложениях.

Пример. Вычислить вычеты ФКП

Основная теорема о вычетах Пусть ФКП  аналитическая на границе  области  и внутри этой области за исключением конечного множества изолированных особых точек . Построим около каждой особой точки  контур  так, чтобы внутри  была только одна особая точка ; контуры не пересекались; все контуры   были расположены внутри , ориентация всех контуров совпадает

Пример Для  убедиться в выполнении равенства

Вычислить .

Интегрирование функции действительной переменной методами теории ФКП

Пример. Вычислить интеграл , где  – отрезок, соединяющий точки   и .

Решение. , где .

.

ПРИМЕР 2. Вычислить .

Решение.

.

ПРИМЕР 3. Вычислить , где  – контур, "склеенный" из полуокружностей  и  () и отрезков  и  оси  (см. рисунок).

Решение. Воспользуемся свойством аддитивности интеграла по дуге и представим интеграл по контуру в виде суммы интегралов

  ().

На оси  имеем  (), т.е. ФКП  имеет значение , .

Поэтому , .

Для вычисления интегралов  и  используем соответствующие уравнения дуг окружностей:

;

.

Сложив полученные значения, вычисляем .

Задание

1. Вычислить , где дуга  есть часть параболы   при . Ответ: .

2. Вычислить , .

Ответ: . Следует взять ; на окружности  имеем  и , , .

3. Вычислить . Ответ: .


Примеры решения задач контрольной, курсовой работы по высшей математике